Durante todo el año recibimos muchos mail, pidiéndonos información para realizar trabajos sobre autómatas. Así que ahora es el momento para recordaros que necesitamos de vuestra colaboración enviándonos los que ya habéis presentado.
|
INTRODUCCION A LA IMPLEMENTACION DE CONTROLADORES PID ANALOGOS
Resumen: este documento presenta los pasos a seguir para diseñar el control de posición de un servomecanismo de corriente directa (cd) y construirlo empleando amplificadores operacionales y elementos electrónicos de fácil manejo y bajo costo. Se ha elaborado asumiendo que el lector tiene muy pocos conocimientos en electrónica pero tiene conocimientos básicos de Control Automático. El controlador PID que se construirá al final del documento es aplicable a cualquier proceso de una entrada / una salida, cuya señal de salida esté en el rango de 0 a 5 voltios de cd y la señal de entrada al proceso pueda ser una señal de –12 a +12 voltios de cd, 4 amperios. Palabras claves: control PID, Lugar de las Raíces, polos, ceros, error en estado estacionario, amplificador operacional.
El control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales, robótica, económicos, biológicos, etc. Como el control automático va ligado a, prácticamente, todas las ingenierías (eléctrica, electrónica, mecánica, sistemas, industrial, química, etc.), este documento ha sido desarrollado sin preferencia hacia alguna disciplina determinada, de tal manera que permita al lector construir un controlador PID análogo sin que sea necesario tener conocimientos previos en electrónica. El lector construirá un servosistema de posición con elementos de fácil consecución en el mercado local. Posteriormente, luego de familiarizarse con el funcionamiento del sistema, hallará el modelo matemático del mismo por métodos experimentales. Con la ayuda del software MATLAB hallará el Lugar de las Raíces del sistema, el cual le dará información importante sobre la dinámica del mismo. El conocimiento del funcionamiento del sistema junto con el análisis de la función de transferencia de lazo abierto y del Lugar de las Raíces darán las bases necesarias para seleccionar el controlador, el cual se construirá con elementos igualmente de fácil consecución en el mercado local y de muy bajo costo. Se requiere, sin embargo, que el lector tenga conocimientos básicos en Control Automático. Para continuar con el tema es necesario definir ciertos términos básicos. Señal de salida: es la variable que se desea controlar (posición, velocidad, presión, temperatura, etc.). También se denomina variable controlada. Señal de referencia: es el valor que se desea que alcance la señal de salida. Error: es la diferencia entre la señal de referencia y la señal de salida real. Señal de control: es la señal que produce el controlador para modificar la variable controlada de tal forma que se disminuya, o elimine, el error. Señal análoga: es una señal continua en el tiempo. Señal digital: es una señal que solo toma valores de 1 y 0. El PC solo envía y/o recibe señales digitales. Conversor análogo/digital: es un dispositivo que convierte una señal analógica en una señal digital (1 y 0). Conversor digital/análogo: es un dispositivo que convierte una señal digital en una señal analógica (corriente o voltaje). Planta: es el elemento físico que se desea controlar. Planta puede ser: un motor, un horno, un sistema de disparo, un sistema de navegación, un tanque de combustible, etc. Proceso: operación que conduce a un resultado determinado. Sistema: consiste en un conjunto de elementos que actúan coordinadamente para realizar un objetivo determinado. Perturbación: es una señal que tiende a afectar la salida del sistema, desviándola del valor deseado. Sensor: es un dispositivo que convierte el valor de una magnitud física (presión, flujo, temperatura, etc.) en una señal eléctrica codificada ya sea en forma analógica o digital. También es llamado transductor. Los sensores, o transductores, analógicos envían, por lo regular, señales normalizadas de 0 a 5 voltios, 0 a 10 voltios o 4 a 20 mA. Sistema de control en lazo cerrado: es aquel en el cual continuamente se está monitoreando la señal de salida para compararla con la señal de referencia y calcular la señal de error, la cual a su vez es aplicada al controlador para generar la señal de control y tratar de llevar la señal de salida al valor deseado. También es llamado control realimentado. Sistema de control en lazo abierto: en estos sistemas de control la señal de salida no es monitoreada para generar una señal de control. Se requiere diseñar y construir un controlador PID para regular la posición de un servomotor de corriente directa. La figura 1 muestra el diagrama de bloques del sistema controlado, en donde:
Figura 1. Diagrama de bloques del sistema controlado
La figura No. 2 muestra el sistema de posición al cual se le implementará el controlador y consta, básicamente, de un motor de corriente directa (cd) de imán permanente, al cual se le ha acoplado en el eje un potenciómetro lineal de 0 a 10 KW . El potenciómetro es alimentado con 5 voltios de cd en sus terminales fijos para obtener, de su terminal móvil, una señal que varía de 0 a 5 voltios durante todo el recorrido en sentido dextrógiro (asumamos 360 grados). 3.1 Elementos
Esta última fuente se empleará para alimentar el amplificador operacional y el circuito de potencia (transistores) con voltajes +V y –V, de tal manera que el motor pueda girar en ambos sentidos. Figura No.1 Servosistema de posición de cd. 3.2 Estudio de los elementos constitutivos Antes de iniciar con el diseño de un controlador es necesario que el ingeniero conozca muy bien la dinámica del proceso a controlar. A continuación haremos un estudio de los componentes del sistema. 3.2.1 Motor de corriente directa de imán permanente. Los motores de cd de imán permanente tienen, en teoría, un comportamiento lineal, es decir que la velocidad desarrollada será proporcional al voltaje aplicado lo cual no es completamente cierto en todo el rango de voltajes. Por ejemplo, si el motor que se empleará en esta experiencia gira a 500 r.p.m. cuando se le aplican 5 voltios muy posiblemente girará a 250 r.p.m. si se le aplican 2.5 voltios. Pero, si se le aplican 0.5 voltios seguramente ni siquiera alcanzaría a arrancar (debido a que con ese voltaje no logra vencer la inercia) cuando debería girar a 50 r.p.m., aplicando el principio de Superposición, si fuese lineal en todo su rango. Es recomendable que se verifique el rango de voltajes en que el motor tiene un comportamiento lineal aplicándole voltajes (con el potenciómetro desacoplado) desde 0 voltios y midiendo la velocidad desarrollada para cada voltaje. Si no dispone de medidores para sensar la velocidad del motor puede solamente medir la magnitud del voltaje mínimo que necesita para arrancar el motor en ambos sentidos y asumir que a partir de ahí su comportamiento es lineal. Esta asunción es válida teniendo en cuenta que perseguimos un fin netamente académico. 3.2.2 Potenciómetro lineal Se debe aplicar 5 voltios de corriente directa entre sus terminales fijos a y b que se muestran en la figura 2. En forma manual y gradual comience a girar, desde la posición inicial, en sentido dextrógiro (o levógiro) y mida el voltaje en el terminal c para cada incremento de la posición. El incremento (o decremento) del voltaje debe ser proporcional al incremento o decremento de la posición del potenciómetro. Si se toman los datos de voltaje para cada posición del potenciómetro la graficación de éstos sería similar a la mostrada en la figura 3. Figura 3. Curva característica de un potenciómetro lineal. 3.2.3 Acople mecánico Del acople mecánico entre el eje del motor y el eje del potenciómetro se debe verificar que no exista deslizamiento.
Para obtener un buen modelo matemático empleando técnicas de identificación, se debe alimentar el sistema con una señal de entrada de frecuencia variable que lo excite en todo su ancho de banda y, posteriormente, con la ayuda de herramientas computacionales (por ej.: System Identification Toolbox de MATLAB), se procesan las señales entrada y salida hasta obtener el modelo que represente en mejor forma la dinámica del sistema. Sin embargo, no siempre el interesado dispone de las herramientas computacionales ni de tarjetas de adquisición de datos indispensable para la toma de las variables de entrada y salida, por lo que recurriremos a formas manuales no muy precisas pero válidas para lograr un modelo aceptable. La función de transferencia de un sistema se define como la relación entre la salida y la entrada del sistema en el dominio de Laplace asumiendo condiciones iniciales nulas. Basándonos en la definición de la función de transferencia, aplicaremos una señal escalón al sistema, graficaremos la salida, hallaremos las ecuaciones de cada variable en el dominio del tiempo, las llevamos al dominio de Laplace, y la relación salida-entrada será el modelo matemático del mismo. Si el interesado no dispone de tarjeta de adquisición de datos para monitorear y almacenar en medios magnéticos las señales de entrada y salida de manera tal que se puedan analizar posteriormente con la ayuda de un PC, que sería lo más recomendable, puede montar la experiencia enunciada a continuación para lo cual necesita los siguientes elementos:
La experiencia consiste básicamente en aplicar un voltaje de cd (señal escalón) al motor, detenerlo antes de dar el giro completo y medir el tiempo y el voltaje final del potenciómetro, así:
La señal de salida corresponderá a una señal rampa con pendiente m cuya transformada de Laplace será
La señal de entrada corresponde a una señal escalón de amplitud igual a la del voltaje de cd aplicado
cuya transformada de Laplace es El modelo matemático será la función de transferencia del sistema, es decir Realice la prueba con diferentes voltajes aplicados al motor, para un mismo tiempo de duración de la experiencia, y verifique que la relación m/V permanezca aproximadamente constante.
Antes de iniciar con el diseño del controlador es necesario hacer un análisis del modelo matemático obtenido. 5.1 polos y ceros El modelo obtenido no tiene ceros y tiene un polo en el origen. Un polo en el origen representa un sistema tipo 1. La figura 4 muestra nuestro sistema en lazo cerrado sin controlador, donde G(s) es la función de trasferencia del conjunto motor-potenciómetro y H(s) es la función de transferencia del lazo de retroalimentación, que en nuestro caso es unitaria. La salida del sistema, y(t), es la señal de voltaje del potenciómetro y, por lo tanto, la señal de referencia debe ser una señal de voltaje de 0 a 5 voltios. Así, si se desea un giro desde 0 a 180 grados se debe aplicar una referencia de 2.5 voltios. Figura 4. Diagrama de bloque del sistema en lazo cerrado sin controlador La ecuación de error es
donde y Por lo tanto Aplicando el teorema del valor final hallamos que el error en estado estacionario tiene la forma
Es decir, si la entrada es un escalón de amplitud V (la transformada de Laplace de la función escalón es V / s), el error en estado estacionario será o sea, Lo anterior quiere decir que nuestro sistema en lazo cerrado respondería ante una orden de ubicación en cualquier posición angular, con gran exactitud. En la práctica no sería así por lo siguiente: imaginemos que queremos cambiar la posición del potenciómetro, que está en 0 grados, a la posición correspondiente a 180 grados; aplicamos entonces un voltaje de referencia de 2.5 voltios. El sumador resta de 2.5 voltios, de la señal de referencia, la señal de voltaje de salida, proveniente del potenciómetro, produciendo la señal de error que será el voltaje que se aplicará al motor. La tabla 1 muestra la forma como varía el error (y por lo tanto el voltaje aplicado al motor) a medida que el potenciómetro se mueve hacia la posición de 180 grados.
Tabla 1. Variación de la señal de error en el sistema en lazo cerrado sin controlador Como sabemos que existe un voltaje mínimo, superior a cero, al cual el motor no continuará girando porque no es capaz de vencer su propia inercia, éste se detendrá sin lograr alcanzar el objetivo deseado, es decir sin lograr un error nulo. Tampoco podemos decir que el sistema de posición no es un sistema tipo 1 sino un sistema tipo 0, ya que en este último el error en ante una señal de referencia escalón, es igual a donde K es la ganancia del sistema en lazo abierto, lo que significa que el error en estado estacionario sería un porcentaje constante de la señal de referencia. Apoyándonos en la tabla 1 podemos apreciar que en nuestro sistema esto no ocurre ya que si la señal de referencia es alta el voltaje inicial aplicado al motor también sería alto (asumiendo error inicial alto) de tal manera que podría desarrollar una gran velocidad inicial y, cuando alcance valores de error cercanos a cero (y por lo tanto valores de voltajes, aplicados al motor, muy bajos), no se detendría inmediatamente, alcanzando valores de error menores a lo esperado o valores de error negativos. Lo mismo no ocurriría a valores de referencia de magnitud media o baja. 5.2 Lugar de las Raíces Con la ayuda del software MATLAB podemos hallar rápidamente el Lugar de las Raíces de nuestro sistema en lazo cerrado, conociendo el modelo matemático del proceso, con las siguientes instrucciones: num = [m/V]; den = [1 0]; rlocus (num,den) grid
Figura 5. Lugar de las Raíces del sistema en lazo cerrado
La figura 6 nos muestra el Lugar de las Raíces, donde podemos apreciar que el polo del sistema en lazo cerrado se traslada desde el origen hasta - a , sobre el eje real negativo, a medida que se aumenta la ganancia del sistema. Esto quiere decir que el sistema responde más rápido a ganancias altas lo cual es correcto ya que la velocidad del motor de cd de imán permanente es proporcional al voltaje aplicado.
Un controlador PID dispone de un componente proporcional (Kp), un componente integrativo (Ti) y un componente derivativo (Td), de tal manera que produce una señal de control igual a donde la acción integrativa del controlador tiene su mayor efecto sobre la respuesta estacionaria del sistema (tratando de minimizar el valor de ess) y la acción derivativa tiene su mayor efecto sobre la parte transitoria de la respuesta. De la información obtenida de la ubicación de los polos y ceros del sistema y del Lugar de las Raíces del mismo podemos concluir:
Podemos entonces decir que con un controlador proporcional será suficiente para obtener la respuesta deseada en el sistema controlado, por lo que procederemos inicialmente a la implementación del mismo.
Iniciaremos con la implementación de un controlador proporcional análogo para lo cual nos guiaremos del diagrama de bloques mostrado en la figura 6. Figura 6. Diagrama de bloques del sistema de posición en lazo cerrado
El primer elemento que debemos construir es el sumador, el cual estará compuesto por un amplificador operacional y resistencias eléctricas, elementos de fácil consecución y bajo costo. Como este documento se ha elaborado pensado en que el lector tiene muy poco o ningún conocimiento de electrónica, describiremos en forma muy sencilla cada elemento constitutivo.
7.1 Amplificador operacional Se utilizará el amplificador operacional LM741 por su bajo costo y facilidad de consecución en el mercado local. La figura 7 muestra el diagrama de conexionado de este integrado. Figura 7. Amplificador Operacional LM 741 Los terminales de los circuitos integrados se enumeran, vistos desde la parte superior, en sentido antihorario. El integrado LM741, amplificador operacional, se debe alimentar, para su funcionamiento, a los terminales 4 y 7 con voltajes que no superen los –18 y +18 voltios de cd respectivamente. Los terminales 1, 5 y 8 no serán utilizados. 7.1.1 Sumador El sumador, o comparador, se puede construir con el amplificador operacional LM741 conectado como muestra la figura 8, en la cual se puede apreciar que el voltaje de salida (terminal 6) es igual a la diferencia de los voltajes de entradas (aplicados a los terminales 3 y 2), que en nuestro caso serán la referencia, r, y la salida del potenciómetro y. Conecte y pruebe el circuito del sumador aplicando diferentes voltajes de cd (entre 0 y 5 voltios) a los terminales 3 y 2 y verificando que el voltaje de salida, terminal 6, es igual a la diferencia entre los voltajes aplicados. Emplee resistencias, R, de 270 KW . Figura 8. Amplificador LM741 conectado como sumador 7.1.2 Amplificador (control proporcional) Figura 9. El LM741 como amplificador inversor Se puede apreciar que el voltaje de salida, Vo, es igual al voltaje de entrada, Vi, amplificado R2/R1 veces, pero con polaridad inversa. Para corregir la polaridad se debe emplear otro amplificador inversor, en cascada, con ganancia igual a 1, es decir, con R2 = R1, como muestra la figura 10. Se recomienda utilizar para R1 resistencias de valor 39 KW , para R2 de 1KW y para R3 una resistencia variable (potenciómetro) linealmente de 0 a 100 KW , para conseguir variar la ganancia del controlador desde 0 hasta 100 aproximadamente. Figura 10. Controlador proporcional análogo con amplificadores LM741 El controlador proporcional análogo, basado en amplificadores proporcionales, genera un voltaje proporcional al error, e, en la relación donde, la ganancia del controlador es Esta señal de control generada, u, será una señal de voltaje que puede variar entre –V y +V dependiendo de la magnitud y polaridad del error. Sin embargo, esta señal no tendrá la potencia necesaria para mover el motor de cd por lo que se hace necesario colocar un amplificador de potencia, que en nuestro caso se implementará con dos transistores PNP y NPN. Vale la pena aclarar también que la salida de voltaje del amplificador operacional no podrá ser mayor que el de la fuente que los alimenta. La figura 11 muestra el circuito amplificador de potencia conectado a la salida del conjunto de amplificadores operacionales, y se detalla la numeración de los terminales de los integrados y transistores. Los transistores empleados son el C2073 y el A1011 (o equivalentes), cuya numeración de terminales se muestra en la figura 12. Figura 11. Controlador proporcional análogo La salida de voltaje del amplificador será, en realidad, ligeramente inferior a (R3/R2)*Vi, debido a las características de funcionamiento de los transistores en su región activa.Figura 12. Numeración de terminales de los transistores C2073 y A1011
Teniendo el sumador, el controlador proporcional y el sistema de posición (proceso) solo debemos proceder a conectarlos entre sí como muestra el diagrama de bloques de la figura 6. Para poder variar la referencia se debe emplear otro potenciómetro lineal, el cual se alimenta con 5 voltios en sus terminales fijos (a y b) y el terminal c producirá el voltaje de referencia. De esta forma, el sistema motor-potenciómetro debe seguir fielmente el movimiento del otro potenciómetro empleado para generar la referencia. A continuación se entrega una lista de elementos indispensables para el montaje del controlador proporcional y el proceso Lista de elementos
La figura 13 muestra el circuito completo del proceso con controlador proporcional. Si desea implementar un controlador PID debe adicionar el control integral (ui) y el control derivativo (ud) mostrado en las figuras 14 y 15 respectivamente. Estos circuitos deben conectarse entre el terminal izquierdo de la resistencia de 39KW y el terminal derecho de la resistencia de 1 KW . Figura 13. Control proporcional análogo para regular sistema de posición Los valores de R y C para el control integral y el control derivativo dependerán de los parámetros Ti y Td calculados por el alumno. Para el circuito mostrado en la figura 14, el valor de Ti es aproximadamente igual a R*C y para el circuito mostrado en la figura 15, el valor de Td es también aproximadamente igual a R*C.
Figura 14. Control integral Figura 15. Control derivativo Este controlador PID análogo construido con amplificadores operacionales, resistencias y transistores no solo es aplicable al sistema de posición tratado en este documento sino a cualquier sistema cuyos valores de entrada y salida se encuentren dentro de las magnitudes de voltaje y corriente "nominales" del controlador. Es decir, se puede aplicar a cualquier sistema cuya variable de salida sea sensada por un elemento que transmita una señal entre 0 y 5 voltios (señal muy común en los procesos industriales o fácilmente transformable desde una señal de 4 a 20 mA) y cuyo actuador trabaje con voltajes entre –12 y +12 voltios de cd y 4 amperios. El objetivo de este documento es despertar el interés en el estudiante de manera tal que construya y controle procesos creados por el mismo que le permitan enriquecer o aclarar los conceptos que sobre teoría de Control Automático ha adquirido, o está adquiriendo, en el aula de clases. Es así como el alumno podría construir sistemas o procesos como:
Bibliografía
Agradecimientos A mis padres por su invaluable y constante sacrificio en pos de mi formación y educación. A mi esposa y a mi hija por el apoyo brindado y por el tiempo que les he robado.
|
|
Todos los nombres comerciales que se utilizan en esta web están o pueden estar registrados por sus respectivos fabricantes. 2000, 2006 Última modificación: 02/03/2006 |